Approximating rational triangular Bézier surfaces by polynomial triangular Bézier surfaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximating rational triangular Bézier surfaces by polynomial triangular Bézier surfaces

An attractive method for approximating rational triangular Bézier surfaces by polynomial triangular Bézier surfaces is introduced. The main result is that the arbitrary given order derived vectors of a polynomial triangular surface converge uniformly to those of the approximated rational triangular Bézier surface as the elevated degree tends to infinity. The polynomial triangular surface is con...

متن کامل

Triangular Bézier sub-surfaces on a triangular Bézier surface

This paper considers the problem of computing the Bézier representation for a triangular sub-patch on a triangular Bézier surface. The triangular sub-patch is defined as a composition of the triangular surface and a domain surface that is also a triangular Bézier patch. Based on de Casteljau recursions and shifting operators, previous methods express the control points of the triangular sub-pat...

متن کامل

Convolution surfaces of quadratic triangular Bézier surfaces

In the present paper we prove that the polynomial quadratic triangular Bézier surfaces are LN-surfaces. We demonstrate how to reparameterize the surfaces such that the normals obtain linear coordinate functions. The close relation to quadratic Cremona transformations is elucidated. These reparameterizations can be effectively used for the computation of convolution surfaces.

متن کامل

Improved bounds on partial derivatives of rational triangular Bézier surfaces

This paper applies inequality skill, degree elevation of triangular Bézier surfaces and difference operators to deduce the bounds on first and second partial derivatives of rational triangular Bézier surfaces. Further more, we prove that the new bounds are tighter and more effective than the known ones. All the results are obviously helpful for further optimization of geometric design systems. ...

متن کامل

Progressive iterative approximation for triangular Bézier surfaces

Recently, for the sake of fitting scattered data points, an important method based on the PIA (progressive iterative approximation) property of the univariate NTP (normalized totally positive) bases has been effectively adopted. We extend this property to the bivariate Bernstein basis over a triangle domain for constructing triangular Bézier surfaces, and prove that this good property is satisf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2009

ISSN: 0377-0427

DOI: 10.1016/j.cam.2008.09.030